348 research outputs found

    XPS study of the effect of hydrocarbon contamination on polytetrafluoroethylene (teflon) exposed to atomic oxygen

    Get PDF
    The presence of hydrocarbon contamination on the surface of polytetrafluoroethylene (PTFE) markedly affects the oxygen uptake, and hence the wettability, of this polymer when exposed to an oxygen plasma. As revealed by X-ray photoelectron spectroscopy (XPS) analysis, the oxygen-to-carbon ratio (O/C) for such a polymer can increase sharply, and correspondingly the fluorine-to-carbon ratio (F/C) can decrease sharply, at very short exposure times; at longer times, however, such changes in the O/C and F/C ratios reverse direction, and these ratios then assume values similar to those of the unexposed PTFE. The greater the extent of hydrocarbon contamination in the PTFE, the larger are the amplitudes of the 'spikes' in the O/C- and F/C-exposure time plots. In contrast, a pristine PTFE experiences a very small, monotonic increase of surface oxidation or O/C ratio with time of exposure to oxygen atoms, while the F/C ratio is virtually unchanged from that of the unexposed polymer (2.0). Unless the presence of adventitious hydrocarbon is taken into account, anomalous surface properties relating to polymer adhesion may be improperly ascribed to PTFE exposed to an oxygen plasma

    Empirical Prediction of Aircraft Landing Gear Noise

    Get PDF
    This report documents a semi-empirical/semi-analytical method for landing gear noise prediction. The method is based on scaling laws of the theory of aerodynamic noise generation and correlation of these scaling laws with current available test data. The former gives the method a sound theoretical foundation and the latter quantitatively determines the relations between the parameters of the landing gear assembly and the far field noise, enabling practical predictions of aircraft landing gear noise, both for parametric trends and for absolute noise levels. The prediction model is validated by wind tunnel test data for an isolated Boeing 737 landing gear and by flight data for the Boeing 777 airplane. In both cases, the predictions agree well with data, both in parametric trends and in absolute noise levels

    Aeroacoustics analysis and community noise overview

    Get PDF
    The goals of the High Speed Research Program are focused on three major environmental issues: atmospheric effect, airport community noise, and sonic booms. The issues are basic concerns that require better understanding before further HSRP endeavors can be addresses. This paper discusses airport community noise and aeroacoustic analysis

    Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits

    Get PDF
    This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals

    Temperature and Emission-Measure Profiles Along Long-Lived Solar Coronal Loops Observed with TRACE

    Get PDF
    We report an initial study of temperature and emission measure distributions along four steady loops observed with the Transition Region and Coronal Explorer (TRACE) at the limb of the Sun. The temperature diagnostic is the filter ratio of the extreme-ultraviolet 171-angstrom and 195-angstrom passbands. The emission measure diagnostic is the count rate in the 171-angstrom passband. We find essentially no temperature variation along the loops. We compare the observed loop structure with theoretical isothermal and nonisothermal static loop structure.Comment: 10 pages, 3 postscript figures (LaTeX, uses aaspp4.sty). Accepted by ApJ Letter

    Effects of orbital exposure on RTV during the LDEF mission

    Get PDF
    Thermomechanical analysis (TMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) were performed on samples of RTV 511 exposed on the Long Duration Exposure Facility (LDEF) mission for 6 years in orbit and unexposed RTV 511 control samples. Slices 20- to 400-microns thick were removed from the exposed surface down to a depth of 1,500 microns through the 3-mm thick samples. The TMA and DSC results, which arise from the entire slice and not just its surface, showed no significant differences between the LDEF exposed and the control samples. TMA scans were run from ambient to 500 C; results were compared by a tabulation of the onset temperatures for flow. DSC scans were run from ambient to 600 C; no endotherms or exotherms occurred over the range observed. What appear to be glass transition temperatures were compared for the samples as a function of section depth within the sample and between the exposed and control samples. The TGA scans from 25 to 900 C, which arise from the surface of the sample initially, showed a slight increase in the top most 105-micron slice (the exposed, discolored side) in the weight loss at 600 C in oxygen. This weight loss dropped to bulk values at the next slice below the top section, a mean depth of 258 microns. The control sample also showed an increase in weight loss as the top surface was approached, but the 600 C weight losses were very inconsistent. The LDEF RTV sample appears to be mechanically undamaged, with a surface layer which oxidizes slightly faster as a result of orbital exposure

    Aircraft noise prediction program theoretical manual: Rotorcraft System Noise Prediction System (ROTONET), part 4

    Get PDF
    This document describes the theoretical methods used in the rotorcraft noise prediction system (ROTONET), which is a part of the NASA Aircraft Noise Prediction Program (ANOPP). The ANOPP code consists of an executive, database manager, and prediction modules for jet engine, propeller, and rotor noise. The ROTONET subsystem contains modules for the prediction of rotor airloads and performance with momentum theory and prescribed wake aerodynamics, rotor tone noise with compact chordwise and full-surface solutions to the Ffowcs-Williams-Hawkings equations, semiempirical airfoil broadband noise, and turbulence ingestion broadband noise. Flight dynamics, atmosphere propagation, and noise metric calculations are covered in NASA TM-83199, Parts 1, 2, and 3

    Time-optimal synthesis of unitary transformations in coupled fast and slow qubit system

    Full text link
    In this paper, we study time-optimal control problems related to system of two coupled qubits where the time scales involved in performing unitary transformations on each qubit are significantly different. In particular, we address the case where unitary transformations produced by evolutions of the coupling take much longer time as compared to the time required to produce unitary transformations on the first qubit but much shorter time as compared to the time to produce unitary transformations on the second qubit. We present a canonical decomposition of SU(4) in terms of the subgroup SU(2)xSU(2)xU(1), which is natural in understanding the time-optimal control problem of such a coupled qubit system with significantly different time scales. A typical setting involves dynamics of a coupled electron-nuclear spin system in pulsed electron paramagnetic resonance experiments at high fields. Using the proposed canonical decomposition, we give time-optimal control algorithms to synthesize various unitary transformations of interest in coherent spectroscopy and quantum information processing.Comment: 8 pages, 3 figure

    Quantum Error Correction via Convex Optimization

    Get PDF
    We show that the problem of designing a quantum information error correcting procedure can be cast as a bi-convex optimization problem, iterating between encoding and recovery, each being a semidefinite program. For a given encoding operator the problem is convex in the recovery operator. For a given method of recovery, the problem is convex in the encoding scheme. This allows us to derive new codes that are locally optimal. We present examples of such codes that can handle errors which are too strong for codes derived by analogy to classical error correction techniques.Comment: 16 page

    Experiments with a Malkus-Lorenz water wheel: Chaos and Synchronization

    Full text link
    We describe a simple experimental implementation of the Malkus-Lorenz water wheel. We demonstrate that both chaotic and periodic behavior is found as wheel parameters are changed in agreement with predictions from the Lorenz model. We furthermore show that when the measured angular velocity of our water wheel is used as an input signal to a computer model implementing the Lorenz equations, high quality chaos synchronization of the model and the water wheel is achieved. This indicates that the Lorenz equations provide a good description of the water wheel dynamics.Comment: 12 pages, 7 figures. The following article has been accepted by the American Journal of Physics. After it is published, it will be found at http://scitation.aip.org/ajp
    corecore